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The arrays, which are easy to design, degrade gracefully
fractions of the elements are removed. For coherent imaging
random arrays do not offer significant advantages over
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SECTION 1

INTRODUCTION AND SUMMARY

; Recent requirements for very high resolution imaging systems have
produced a great demand for apertures with high resolution, low sidelobe
levels, and high gain, To achieve the resolutions desired, extremely

) large apertures are needed, The realization of such apertures is gen-

f erally ccnsidered to be either economically or technically infeasible,

- Table 1 gives some representative numbers for such arrays. The .umbers

are astronomically large in many cases. Hence, attention has been

focused on large arrays, Arrays with uniformly spaced elements produce

undesirable grating lobes. For these arrays, there exists a maximum i

spacing between elements if the grating lobes are to be removed from

the object. The number of elements required in such uniform arrays would

be very large and in direct proportion to the aperture dimension.

Therefore, the investigation of arrays with a reduced number of ele-

ments (the "thinned arrays'), which possers the desired characteristics

oz Ty wmmor ., P . o e e

of the full arrays, has been of recent interest, :
Arrays with incommensurable element spacings usually have aperiodic :
radiation pattern functions. Consequently, the number of elements

required is not directly determined by the aperture dimension. However,

there is no general theory available for the algorithmic design of this

class of arrays. Many of the designs to date have been based on trial-

R

and-error methods using high-speed computers, But there is never any
assura.ce that any particular trial will produce a successful design,

One class of arrays exists that possesses the desired character-

L AT TR T T T

istics of high-resolution imaging systems and yet requires surprisingly
few elements to achieve these features. This class, random arrays, is

well established in antenna theory and has been generally applied to

signal-detection applications. The properties of such arrays are

approached from a probabilistic point of view, even though the per-
formance of any particular array itself is not probabilistic. That is,

once the positions of the array elements are determined, the properties

e e A E A oo s

of the random array are completely deterministic. A prime advantage

9
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of these arrays 13 that predictions on the array's performance can be
made before carrying out detailed computations. Therefore, designing
the array is reduced to playing a game in which the probability of
success is determined to be sufficiently large before any actual evalu-
at‘un of the final array design is attempted. Other advantages of
random arrays are discussed below.,

For random arrays, the sidelobe level is closely relsated to the
number of elements and, to a much lesser degree, to the total aperture
dimension. The resolution, or main beam width, depends on the total
aperture dimension; the directive gain 1is proportional to the number of
elements used if the average spacing is large. Consequently, oxtremely
high resolution can be achieved with very few elements, On the othar
hand, for a given number of elements, higher resolution can be obtained
by spreading these elements over a large aperture, with the sidelobe
levels remaining substantually the same and the directive gain constant,

We have applied the concept of random arrays to imaging systems to
determine their :apabilities and limitations for imaging applications.
To the best of our knowledge, this is the first demonstration of the
utilization of thinned random arrays in imaging systems. Computer
simulation studies have been carried out here for incoherent, partially
coherent, and coherent imaging. These investigations were performed
using various conditions, including variable signal-to-noise ratio (S/N)
and phase aberration in the imaging system, with monochromatic and poly-
chromatic 1llumination of the object., However, no attempt was made to
post-process the reconstructed images for any type of enhancement.

The results show that good quality images can be obtained for
ranuom arrays with very few elements, even down to only 6% of the
number of elements of a uniform full array of 4096 elements, (The
number of elements in the full array is equivalent to the number of
elements resolved by the full array in its field of view (FOV)). These
results hold for a low (e.g., > 3) S/N and a high-intensity background
in the image. For broadband polychromatic incoherent imaging? the

number of elements can be cven further reduced. In addition, this

11
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image quality can be achieved by many distinct random—array configurations,
The image resoluticn can be maintained as the number of array elements

i8 reduced if the aperture dimension is fixed for each random thinned
array. The quality of the image degrades, as shown by the appearance
! of higher (random) background levels as the number of array elements )
i | ' is reduced. This is a manifestation of the increased sidelobe level of 3

| the random array as the number of elements is reduced. For a given

number of elements, the simulation results exhibited an improvement

in image resolution as the number of elements was spread over larger
aperture dimensions. The overall background levels in these images
remained essentially constant. These encuouraging results, which were

obtained without utiiizing any averaging or interpolation post-processing

techniques ia the aperiure plame for image enhauncement, lead us to

believe that similarly impressive performance can be achieved in
practice,

We have studied the effects of background, S/N,and phase aberra-

I PO

tions (such as those caused by turbulence and any figure disposition
in the case of incoherent imaging). For coherent imaging, the effects
i of speckle were examined, and a method of speckle elimination was

studied. The determination of the dependence of the maximum thinniug

e e T b e s

as a function of the pertinent parameters, including the totel number

|
|
! factor possible to retain good quality in the image was investigated
[ of elements and S/N.

!

To present a comprehensive exposition of our résults, we have

e o oty i s et T e 0

incorporated in this report the principle results of the previous

E; reporting periods along with the two studics performed in this period.
In this year, a study was made of the use of broadband polychromatic
radiation incoherent imaging. Partially coherent imaging was modeled
as well, and computer simulations were performed.

e e

B}

KO Atre ko i e o and e

v -

12

- o A . ek - - -

N Ty ! PP LY W SR e Nk, 2.t Aol
s U T - T VIUUUTUUT SR IPIULY MU EE ISR SRR s xRt




ﬂ'm,--.i - pee———" AN [N

SECTION 2

TECHNICAL DISCUSSION

A, IMAGING CONCEPTS

The imaging process may be viewed in two complementary ways.
Although mathematically equivalent and related by theorems of Fouriler
transformation, one view or the other reveals special insights and 3
simplifications, depending on the particular circumstances. We may,
for example, view the imaging process as a convolution of the object
field and the radiation or antenna pattern of the aperture, as is the
case for coherent imaging. If the aperture is a large lens or collect-

ing mirror, then its radiation or diffraction pattern, which is the

O

Fourier transform of the aperture configuration, will be a sharply
peaked function in angular extent with only small subsidiary sidelobes.
Convolving this pattern with the object field produces an image field
the quality of which depends on the strength and degree of sharpness

of the main.obe and the weakness and disposition of the sidelobes.

Alternatively, we may view the imaging process by considering the
Fourier transformation of the object into its spectrum of spatial fre- |
quencies, If only the intensities of the.image and object are of

interest, then the Fourier transformation of the intensity representa~

A I S o A

tion of the object will appear in the far field at the aperture, or

et S s e e,

entrance pupil, of the imaging instrument as the (complex) visibility

N pattern; it is sometimes called the partial coherence transform vis-a-vis

the Van Citert-Zernike theorem.,* This coherence transform 1s sampled

e i Tobk At m - g

to some degree in the aperture plane, depending on the nature and size
of the collecting aperture, Th: amplitude of the transform is the P
classical visibility of fringes as a function of spatial frequency given

by the separation of the aperture elements. The phase of the trans-

form is the spati.l phase of these fringes referred to the optical axis

or focus of the system, This sampled function is then inversely

*This theorem is the spatial analog of the Wiener-Khintchine theorem
relating the power spectrum and temporal correlation for stationary
processes.

13
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transformed to form the image. The quality of the image, from this
point of view, depends on the degree to which the irradiance of the

object has been sampled in the aperture plane and the disposition

of the sampling elements, Insufficient and regular sampling of the

aperture will produce an image not only lacking in all the correct i

details at the missing (i.e,, unsampled) spatial frequencies, but will

also produce vivid spurious image information caused by large uncom-
pensated Fourier terms.

DTGPPI NIV NP TG

To amplify the description of imaging and to cast these concepts
in more concrete terms, it is instructive to put the results in more

formal mathematical terms. The mathematical representations of the

imaging process take especially simple form in the limiting cases of

completely coherent and completely incoherent imaging. These cases

are of practical interest as well, for they are good approximations

o e o A, ol Ml

to conditions encountered most often, However, we did not limit our '
study to these cases,

1. Coherent Imaging

Coherent imaging syscems are linear in complex fiecld amplitude,
From diffraction considerations, the field distributions of the image,

Ui(x,y), and object, Uo(u,v), are related by the convolution integral

Ui(x,y) = jf h(x~-u, y-v) Uo(u,v) dudv , (1)
obj

where h(x-u, y-v) is the impulse response of the imaging system. A

an L e e ki ik i 0 =

generalized schematic of an imaging system is shown in Figure 1. The
pupil function P(x',y') has the property that

PN

1 within the aperture configuration
P(x',y') =

0 elsewhere. (2) ‘

This function accounts for the finite extent of the pupil, or aperture,

of the imaging system, The system impulse function is divectly related

14
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to the pupil function by a Fourier tr.nsformation:

hooy) = [ P8I TTOTB) gogy (3)

aper

Thus, for a given wavelength, the imaging properties of a system are com-—
pletely determined by the pupil function, or aperture, of the imaging
system,

Two quadratic phase terms that normally appear in Eq. 3 have been
neglected in the diffraction formulation of the imaging system. These

terms convey phase curvature information and can be dropped directly 1if

.imaging is considered to “e between two spherical surfaces. For plane

surfacesg, these teims can also be neglected. The justification is
based on the fact that the resultant image 1s usually sensed with
detectors that respond to intensities, One of these quadratic phase
terms only modifies the phase distribution of light and cannot affect
the resultant detected image Intensities. The second quadratic phase
term can be neglected also 1f the imaging system maps neighboring points
in the object plane onto neighboring points in the image plane. This
condition is satisfied for most cases where the object is of small
angular extent, Mathematical details of these concepts can be found in

J.W, Goodman, Introduction to Fourier Optics.

4008 -2
Y x' x

////

GBUECT APERTURE IMAGE
PLANE PLANE PLANE
(PUPIL FUNCTION)

Figure 1, Schematic of generalized imaging system,
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. The convolution integral, Eq. 1, can be conveniently recast into ;

its spatial frequency spectrum representation by Fourier transformation, i

Penoting the Fourier transforms of U and h by U and E, régpectively,

the Fourier representation of Eq. 1 is

R e

R R

Uy (6 0E)) = h(ELED T (£,,6) (4)

| where fx and fy are the Fourier spatial frequency components. Here,

ST YR A RS T T L e e
3.

ﬁ(fx,fy) is known as the coherent transfer function (CTF). Recalling

\ from Eq. 3 that h(x,y) is already the Fourier transform of the pupil .
5 function P(x,y), then ]
; ;

. ;
L h(fxyfy) = P(fxsfy) ’ (5) 1
E and Eq. 4 becomes §
g Ui(fx’fy) = P(fx,fy) Uo(fx,fy) R (6)

; where magnification and image inversion have been ignored. The rela-

o s o et aea e

tionship between the coherent transfer function h and the pupil func-

m ko n

: tion (or aperture) P is a direct and simple one. In the Fourier
d : transform representation, therefore, the pupil function (or aperture)
samples the Fourier spatial frequency components of the object trans-— ;

form field. The image can be reconstructed from the sampled frequency

I components by an inverse transformation of Ei(fx,fy).
As Eq. 6 shows, diffraction effects of the imaging system are :

A
!
E manifested by the finite extent of the pupil function. That is, high
2
) 'eut :

| spatial frequency components of the object transform field are

off" or not sampled. From another point of view, the high-frequency

components of the object fileld diffract to a greater angular extent
than the low-frequency components: they are not "intercepted" by the 5
finite aperture of the imaging system. To reconstfuct only the high-
frequency content of the object (e.g., the edge content), it would be ]

SIS SR SL AV PUUPN PUUPUN (TR PLT SO ST ! Sadaan F SRR USSR A 3 .1 7% 1T VLS
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necessary to sample only the high spatial frequency components of the

object transform field. In this case, an annular aperture would be

§
é
i
§
13
;
l=!
P
{

. ' adequate,

2, Incoherent Imaging

Incoherent imaging systems can be viewed from the same approach as

T W g T ety e

-
—

described above. For such incoherently illuminated objecté, the imag-

ing system is linear in intensity distribution. From diffraction

R 2 AP

considerations, and representing the image and object field intensities

by Ii(x,y) and Io(u,v), respectively, these field intensities are
related by the convolution integral

L,(xy) = JJ |h(x-u, y-V)12 I (u,v) dudv , €)) i
' obj :

AR

where h(x-u, y-v) is again the impulse response of the imaging system.

By forming the intensity of Eq. 1 and imposing the condition of statis- é

T AT

tical independence (incoherence) on the phasor amplitudes across the
object, Eq. 7 can be derived from Cq. 1. In general, the statistical

nature (or coherence) of tha object phasor amplitude determines the

ol TS e P AT e e A A e 20 DL e s 1 Bty

form of the imaging equations.
3 The image field intensity is also determined by thg system impulse
V response h(x,y), which, in turn, is related to the pupil function

PO T ORI

7
ﬁ P(x',y') by Eq. 3. However, the mapping in this case is carried out
[ by |h(a,B)|2, the magnitude squared of the system impulse function,
The function |h|2, known as the point spread function (PSF), gives,
; for finite apertures, the degradation of a §-function (point) source i
through the imaging system.
} Because of the convolution form of Eq. 7, it can be recast into ;
| its spatial frequency spectrum representation aleo. Denoting the

Fourier transforms of I and |h|2 by T and ﬁ, respectively, the Fourier

representation of Eq. 7 is

Ii(fx,fy) = ﬁ(fx,fy) Io(fx,fy) . (3)

17
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The function H(f o f ) is commonly called the optical transfer function
(OTF) of the incoherent imaging system, and its modulus |H(f f )| is
known as the modulation transfer function (MTF). In the Fourier trans-
form representation, the OTF acts as a complex weighting factor in
mapping the Fourier spatial frequency components of the object field
intensity into image Fourier spatial frequency components, The image
can thus be reconstructed from the mapped frequency components im
transform space by an iuverse transfermation of I (f of )

Both the CTF, h(f £ ), and OTF, H(f of ), involve the system
impulse response h(a, B). There exists a specific relationship between

them. The autocorrelation theorem can be used to show that

H(f f ) = ff h(a,B) h*(cz+f R B+f ) dadB (9)
aper
and thus that the OTF 1is the autocorrelation of the CTF. Using Eq. 5,
the above relationship can be reduced further to show that the OTF
ﬁ(fx,fy) is the autoccrrelation of the pupil function (or aperture)
P(x',y"):

H(E,E) = ff I'a,B) Pr(o+f,, BHL)) dadB . (10)

aper

There is an interesting and important geometric interpretation to the
autocorrelation function of the aperture distribution, It counts or
measures the distribution of all element pairs, discrete or differen-
tial, as a function of pair separations, independent of the absolute
position of the elements, This may be readily seen by considering a
one~dimensional array of discrete elements irregularly disposed on a
regular lattice, The first point (zero separation) of the autocorrela-
tion function is the result of multiplying the array with itself, and
merely counts the number of elements in the array. Displacing the
array over itself by one unit produces overlaps wherever there were

unit separations in the array itself; on multiplication, the number of
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pairs of unit separation is counted. Similarly, the larger displacements

measure the existence of larger separation pairs. Since the separation

of a pair exists in sgpatial frequency space, tha OTF for incoherent light
can be vicwed as a weighting function with a modulus equal to the number 1
of pairs of elements at each spatial frequency. . 4

3. Partially Coherent Imaging Transfer Function

The concept of a linear system impulse response can still be used,

o R e AT T TR T

even in the case of partially coherent imaging, althcugh its representa-

tion 1s somewhat more complex. Recalling the definition of the mutual

coherence function F(§i,x2,tlt2) as the cross correlation of the fields
at U(;i’tl) and U(§2,t2), and assuming the fields are statiorary in

time, I' may be written as a function of difference in time T = tl

- t2:

v ST A RO T T

I(y,%, 0 = <0G, t1) U GpHt)> (1)

s ot Lot e )

where the bar notation (;i) indicates a two-dimensional spatial vector
(xi,yi). The coherence function satisfies the wave equation and
_ therefore propagates, as does light itself, with the effects of diffration.

As a result, the Fourier components of the coherence function for each

i 0 it AR 3t 8 BN 2 i e SAOKL( hmtrb B R

carrier frequency at the image may be related to that at the object by .

an impulse response function not unlike that for fields themselves: 3

;  faane =[] e, o 8t G @ FEL,w s, a2 5
‘ object

] - where f(m) is the Fourier transform of T(T).
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Assuming the quasi-monochromatic approximation

i
1'(u1,u2,w) = I'( 1u2,0) Sw - w) , (13) !
i9
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we may write, after retransformation and simplification of the integral,

1wt Jf J [ I h X0y, 0) b Ry=0y, w) I(@,,5,,0)dd,du, ,(14)
object

r(;c"l,;z,r) = e

vhere w is the mean carrier frequency.
of the object and image.

This relates the mutual coherence

Since the intensity in the image equals
P(;i,;i,O) of the image, we nay write

I(xl) = IJIJ [h(x u , W) 11 (x2 uz, w)) P(ul,uz,O) du. du2 , (15)
object

where the bracketed quantity may be considered to be the iapulse response,

For numerical or experimental analysis, the image intensity can be generated

from Eq. 15. Equivalently, for a given form of I' in terms of the field

or intensity, Eq. 15 can be written entirely as a linear superposition
of object mutual intensities.
intensity J(u;,u,).

Particular explicit models of the coherence 1(u1,u ) of the object

F(Ei,;&,O) is sometimes called the mutual

fields allow particular development of the image intensity I(xl) in

terms of the object fields or intensities. Of course, Fourier trans-

forming the impulse response relation (Eq. 15) by the convolution

theorem recasts it into the form of a linear transfer function. Four-

dimensional convolution or Fourier transforms on sizable images will
exceed the capabilities of most computers.

To simplify our computer calculations, we consider an coptical system
with transmission function for mutual intensity K(Gi;; ). Using scale-
normalized coordinates where the object point and its Gaussian image

have the same coordinate numbers, the transmission of the mutual intensity
is given by:

J (xl,xz) = JJJJ J (u u2) K(ul,x ) K (uz,x ) du du . (16)
cbject
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A second major assumption we will make, besides monochromaticity, is |
that the object is small enough to form an isoplanatic region. In this 4
case, the transmission function K is a function only of the differences

in coordinates, for example, K(x - ;),and not of the coordinates them-
selves. Then Eq. 16 becomes

5 Gy - [[f] 5,6 ke EEy dds, - an
object

This relationship is a convolution and we can apply the convolution

t
L

, theorem to the Fourier transforms of the parameters to obtain 1

F(E,g3£',8") = J(£.8:6,8") R(£,) B (~£',-g") .  (18)

The transmission of mutual intensity is seen to still be a four-

dimensional linear system. Note also that the Fourier transforms are

20 e bl ko

F
{
E four dimersional.

The ~bove formulation is simple in form, but s8till leads to signifi-

s i S Y

cant problems in terms of implementation in digital image processing. L
= : For example, in our simulations the smallest basic image is represented by 1
: ‘i an array of 128 x 128 pixels. To represent the mutual intensity for this .
s image would require 228 complex numbers, which is far in excess of

E j available storage. Also, computing the four-dimensional Fourier transforms
¥

i for such an image is computationally prohibitive, even using fast Fourier

transform techniques.

! To mitigate the data storage problem, we use the degree of

RPN T TP U P

. coherence, |, defined'by .
R ;oS
— - J(ul’uz) : }

- - . 19 :
O AR () .
.:l
i

To understand how this parameter can help to simplify the problem,

consider the case of partial coherence airising from a uaiform extended
- incoherent illumination source. By the VanCittert-Zernike theorem, if
; l the distance between the points (;1) and (Eé) is small compared to the
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] distance to the source, the degree of coherence is given by the normalized

3 Fourier transform of the source intensity distribution. Thus, for a

Gaussian source, U will be Gaussian. For a square source, it will be the

v

two-dimensional sinc functions; for a circular source, it will be the ]

Bessel function of first kind and first order.

Tt S

Basically then, the degree of coherence of the illumination on the
object will be a function only of the difference in coordinates for those

cases of interest. Thus the mutual intensity of the object can be
written

e
—

e g e

JO(EI,EZ) - uo('Jl - GZ) /‘FTIO 5 fxo‘z—u—z‘) . (20)

g e

That is, we can represent the mutual intensi’ les by two two-dimensional
functions: W and I.

The problem of cbmputing four—~dimensional FFTs remains. If Eq. 20

b0 e B oo e o M S

is examined, we see that this representation has terms that are separable

by points (the intensity function), and it has a term u that is normally

g o T B
TR TR AT T T

separable by coordinates (as, for example, with Gaussian or sinc forms for
the degree of coherence of the illumination). If the degree of coherence

é would be approximated by a function that were totally separable in all

e i ot i Pt e L o il A3 v

: coordinates, then Eq..20 could be separated by poiants into a product of

‘ two two-dimensional Fourier transformswhich would ther split into a product
of two two-dimensional transforms, which can be computed easily. Extending

i this approach, we looked for an approximation for the modulus of U that was

' a sum of totally separable terms and was a sum cnly of the absolute values

of the difference in terms. To this we added a complex phase that was

A et it Ak T e B et v+ 2 1 P

separable by points, as are the intensity terms in Eq. 20. In each axis, : {

: the functions we selected for a cosine series representation of u are of j
1 the form : ) é
N 4 3

D A, cos B @-T,) (21) _

n=0 i
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where o 1s a parameter that determines the coherence radius. For example,
if a is zero, the functions yield coherent imaging. Many realistic
coherence functions can he well represented by such a cosine representation.
Note that this function is separable by expanding the terms using
trigonometric identities and that it is symmetric in Ei and :é. This

results in a representation for the mutual coherence of the form

_ N @) 16T,
3,Ga,6,) = 2 £ @) £ (@) e 1/ e Iy . (22)
n=]1

Since the optical transmission function also separates, as it is a set of
ones and zeros distributed over the aperture, the entire transmission as
given by Eq. 18 also separates into a sum of separable functions.

Appendix C gives an example of 8 six-term cosine series representa-
tion of ¥ (Eq. 21) and of the resulting 12i-term separable reprxesentation
(Eq. 22). The result is plotted in Figure 2.

B. THINNED ARRAY REQUIREMENTS FOR IMAGING

The two viewpoints of imaging discussed above (i.e., the convolu-
tion integral and transfer function representations} permit a revealing
approach for the application of thipned arrays to imaging systems. To
achieve high resolution in the image, the high spatial frequency content
of the object must be maintained. Referring to Eq. 6 for the ccherent
case, we note that a large aperture is required to sample the high
spatial frequency content of the object transform field. Relating this
requirement to the convolution integral representation (Eq. 1) and
recalling the relationship of Eq. 3 between the system impulse function
h(a,B) and the aperture P(x',y'), it is seen that a large aperture
implies a sharply peaked system impulse function with low subsidiary
sidelobe levels. ‘In this case, the contribution to the image field
intensity distribution will be given mainly by the sharply peaked main-
lobe of the aperture, with relatively small contributions coming from
the low-level sidelobes in the convolution process.

For th= incoherent case, similar Interpretations can be given,

although the aperture (or pupil function) P(x',y') appears now in a less
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Figure 2. One axis separable degree of coherence., The two-axis

function 1s a product of one-axis functions.

24

v e e e e = — e ——

AR N Y Y st i w5 ST SIS Y L1 % GPUPRSTOTS: ¥ U Y AP R

128.

P e et

it sk 2 3

-t i

- aviato st

et e o b e

PP PR

e & e o e e A ek 2 Mk miae o




]
i,
!
3
F"
E

e

e T

[

g

—

Rt T o

T

direct way through the system impulse function lh(a,B)lz. which repre-
sents the received power distribution of the array pattern. Again,
referring to the transfer function representation (Eq. 8) and recalling
the autocorrelation relation of the aperture to the OTF ﬁ(fxffy)’ Eq. 10,
it is seen that high-resolution images require detection at large sepa-
rations in the spatial frequency plane. This translates again into a
large aperture. Viewed from the convolution integral diffraction point
of view,Eq. 7, the system impulse function (or proint spread function)
lhl2 must possess a sharply peaked mainlobe with relatively low level
sidelobes. In such a case, the subsidiary sidelobe contributions will
not be sigi .icant in the convolution integral and therefore will not
appreciably degrade the image. ]

As pointed out in Section 1, high-resolution imaging systems may
be infeasible because of the large apertures required. The necessity
of utilizing a much smaller number of elements to accomplish the
requirements of the full aperture is obvious. Stated most simply, the
task 18 to design thinned arrays that possess the desired characteristics
of large apertures for high-resolution imaging applications: sharply
peaked mainlobe, low-level sidelobes, and high directive gain.

One obvious way of reducing the number of elements required by a
full array while still recovering the total information content of the
object is to impose the sampling theorem. Sampling in the aperture
plane with a periodic array of receiver elements reproduces an image
of the object that is replicated at a distance inversely proportional
to the sampling spacing. Spacing the sampling locations at the reci-
procal of the object dimension and scaling appropriately for wavelength
and target range cause the replicas to just touch. This is the sampling
interval dictated by the sampling theorem. Spacing at finer intervals
spreads the replicas farther apart, thereby reducing the so-called
aliasing effect. However, this is achieved at the expense of requiring
more array elements, while not increasing the information content of
the image. By truncating the sampled space, each replica has the edge

ringing that even a [ull diffraction limited finite aperture would
suffer.
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These properties can be demonstrated by defining the convenient
sampling function commonly called the comb(x,a), which is IalEG(x - na).
The comb samples a function at the values x = na when it is uultipliéd
by that function. In addition, convolving the comb with a function £(x)

replicates that function at the interval a:

(1/a)comb (x,a) @ f(x) = Lf(x - na),

where, for convenience, @ represents convolution. The replicas mav
overlap depending on the extent of the function compared to the inter-
val &. The Fourier transform of a comb is another (reciprocal) cowb.
As may be recalled from the relationship between grating periodicity

and grating lobes or orders in diffraction theory, the Fourler transform

.\-—-\
comb (f',

By the convolution theorem, if a sampled function is Fourier transformed,

of comb (x,a) is

m e

) = 1§(x' - n/a) .

then a replicated transform of the function is produced:

l—\ .L -~
Fourier transform of|comb x',-; f(x")] = £(x) ® comb(x,a) .

Because of the reciprocal nature of the transformed comb, the closer
the original samples, the farther apart are the replicas in the convolu-
ted transform. If an object f(x) is bounded at xmax’ then its replicas
will just touch if the object transform f(x") is sampled at a = 1/xmax.
Finer sampling of theobject's transform f£(x'; spreads the replicas
apart. This may be viewed, in the case oif the imaging problem, as
spreading apart the grating lobes (the convolution comb) of the aperture
array (the sampling comb). Limiting the required infinite number of
samples needed for exact reproduction of each replica to a sample of
finite extent distorts the reproductivn in exactly the same way as does
a truncated full aperture (i.e.,Acontinuous sampling). It preduces all
the well known distortions anu =dge "ringing" of diffraction by a trun-

cated aperture. The number of sampling points required equals the
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number of resolution elementis seen on the object, For the coherent case,
the number of sampling points is, in fact, the number of elements in the
array; for the incoherent case, each sampling point 1is derived from a
pair of elements. N elements prcevide N(N-1)/2? pairs including possible
redundancies.

In determining the best thinned array configurations for high-
resolution imaging, the vast amount of established analysis of antenna
array theory can be fruitfully applied to imaging systems. In particu-
lar, the concept of random arrays appears to be an optimum approach to
this problem. Although random arrays have been analyzed in detail for
use in microwave antenna theory, their utiiization has been restricted
mainly to signal detection in the microwave region. To the best of our
knowledge, their application to imaging systems has not been explored.
The properties of random arrays and their superiority for high-

resolution imaging applications are discussed in the next section.

c. THINNED RANDOM ARRAYS

As discussed previously, the problems associated with the implemen-
tation of high-resolution image systems (whether full arrays, uniformly
thinned arrays, or algorithmically designed thinned arrays) may be
alleviated by using thinned random arrays. Random arrays offer distinct
advantages over conventional arrays not only in their ability to
accomplish the objectives of the imaging system with many fewer elements,
but, perhaps equally important, also in their ability Eo predict the
a priori probability of a successful design. The mathematical details
of the properties of random arrays have been investigated by Lo as they
apply to antenna theory. Some essential results of this work are repro-
duced in Appendix A. Although this theory has been well developed for
antenna applications, its usage in imaging systems has not been explored
(as evidenced by a search of the published literature), The many attrac-
tive advantages of this class of thinned arrays are discussed below as

they apply to high-resolution imaging systems.
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Random arrays can achieve high resolution, low sidelobes, and high ]

directive gain with only a small fraction of the number of array ele-

ments normally required by uniform arrays to accomplish the same objec-
' tives. Furthermore, the fraction of reduction possible (i.e., thinning

factor) becomes more dramatic as the number of elements normally required

in the uniform array increases. For this class of arrays, the sidelobe

levels are closely related to the number of elements used in the array

ST e

and, to a much lesser degree, to the aperture dimension. Steinberg has
: concluded that the peak sidelobe level is linearly dependent on N, the
number of array elements, and only logarithmically dependent on the

aperture dimension. Therefore, for a given number of elements, highker
and higher resolutions can be obtained by spreading these elements over

a larger and larger aperture; the sidelobe levels would remain

substantially the same while the mainlobe is narrowed proportionately.
X On the other hand, if the array aperture size is fj<ed, the required
‘ specifications of the array can be attained with many fewer elements by
using random arrays. As few as 15 elements will give good agreement to
theory under c. cain conditions.
Equally important, the question of the successful realization of
a design to prescribed specifications must be considered. Since no

! seneral theory exists for the algorithmic design of aperiodic arrays to

e e b R e et o i i S

meet prescribed performance levels, the results must necessarily be

obtained by a trial-and-error procedure, even with the aid of high-speed

computers. Contrast this with random arrays, which give an a priori

| probability of success in meeting design specifications. The probability

of success is determined before any detailed computations are carried

out.

ek A A e il | e i

' Although the properties of random arrays are approached from a
probabilistic point of view, the performance of the array is not
probabilistic. The performance of the array is completely deterministic

once the disposition of the array elements has been decided. Thus, in

this approach, the design of an array is reduced to playing a game of

it il

chance, for which the odds in favor of success could be designed to be

overwhelmingly in our favor. For one-dimensional arrays, experimental
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verification of these characteristics have been made cn antenna pgtterns
in the microwave region by Lo and Simcoe. The agreement between experi-
ment and theory was remarkable. Similarly, Steinberg has compared the
peak sidelobe levels between random arrays and algorithmically designed
aperiodic arrays. Specifically, he compared 70 algorithmic arrays with
170 random arrays for the distribution of their peak sidelobes. He
found that both distributions were nearly log normal with the same
average and median values, However, a cruclal difference existed in
their standard deviations. The standard deviation of the random array's
diatribution was found to be approximately half that of the algorithmic
array's. Thus, "'the compactness of the rardom distribution almost
guaraatees against selection of a random ar.ay with catastrophically
large peak sidelobes."

Other significant advantages exist for random ar.avs. Because many
fewer elements are required in one mode of application of random arrays,
the rate of transmission of information from such arrays would be less
than that required for full or uniform arrays, thereby reducing the
bandwidth of the transmission. The tolerances on the exact disposi ion
of the array elements need not be very stringent for random arrays to
achieve the design specifications. Recognizing the fact that the sidelobes
of random arrays are disposed at random locations relative to the mainlobe,
there exists a very simple scheme of image enhancement to suppress the
spurious background levels caused by the sidelobes. By averaging the
reconstructed images obtained from different random array configurations,
the background levels can be suppressed as 1//M, where M is the number of
images used for the averaging process. The different array contfigurations
can be achieved through the use of reflector elements placed at various
locations, aud the signals from these reflectors can be transmitted to the
receiver elements through a switching sequence, Finally, by the very
nature of th2 random array concept, the performance of these arrays is
not very susceptible to individﬁal array element failures or destruction.
Subsets of larger random—array -onfigurations will perform adequately
without catastrrhic effects. This graceful degradation is shown in the

computer simulation results in Section 2.D.
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The incoherent OTF uf the thin random array, which can be calculated
by its autocorrelation, will have very few redundant vector spacings
(see Figures 5, 7, and 8). There are N(N-1)/2 vector spacings produced
by N array elements. For 'ncoherent imaging, these spacings in autocor-
relation space are the spatial frequency sampling points. The OTF
measures the existence and number or redundancy of these samples as a
function of spatial frequency. If it were possible to sample fully and
have no redundancy at all, then it would require approximately only V2N
array elements to have N desired unique samples. The full array of N
elements can distinguish N unique resolution clements in its FOV. This
may be seen by noting that the FOV of the array is determined by the
diffraction angle orf the array element and is inversely proportional to
the element dimension while resolution is proportional to array dimen-
sion. For example, for a 4096-element full array, only V2N N 91 elements
or V2/N ~ 2% of the full array would be required for complete sampling
were it not for occasional redundancies and missing spatial frequencies.
More elements are needed to make up the deficiency. In one dimension,
there are only a very few nonredundant arrays possible. In two dimen-
sions, it is impossible, in principle, to have a nonredundant array that
fills the autocorrelation space of the array. In our studies for mono-
chromatic imaging, we have found it necessary to employ random array
elements only three times more numerous than this theoretically -
unattainable nonredundant design number. For polychromatic imaging (as
explained below), only 1.5 times more was needed. Thus, thinned random
arrays can automatically perform low redundancy sampling.

The above discussion has concerned monochromatic or quasi~‘
monochromatic radiation.\ For polychromatic incoherent imaging, even
fewer elements are needed in the thinner array to get a good sampling of
the spatial frequency plane. Each array element pair defines or measures
a different spatial frequency for each different wavelength, so many new
spatial.frequencies are sampled as the bandwidth is increased. If the
object does not have a pathologic spatial frequency-"color" relatioaship,
polychromatic imaging with a thin random array willi be superior to

monochromatic. OQur computer simulations bear this out strikingly.
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Another claes of arrays may be specially constructed to be minimally
redundant or even nonredundant and compact up to a maximum spatial frequency
that is, however, much less than that given by the maximum dimension of the
array (see FigurelO). This class of arrays shares some properties with ;
random arrays, but, since they are generated algorithmically, it is not
proper to call them random. These two classes of arrays can be relatively

jmmune, in a special sense, to phase aberrations.

A ST ol S S il

To see how this immunity may come about, consider a pair of aperture
elements at a fixed spacing that defines a certain spatial frequency, f,
as the elements of an interferometer producing fringes of a certain
"visibility." The MIF of the aperture is a synthesis or the visibilities ;
of all such pairs for all frequencies. Adding an additional redundant %
pair at a frequency f, in the absence of phadse distortion, always
enhances the MTF at that frequency. But consider an additional pair at
f translated somewhere in the aperture where it suff rs a relative
space variant phase distortion due to the atmosphere or distortion in

figure. It still, as a pair, produces fringes of the same visibility

although the fringes are shifted. That is, they are shifted in phase.
Synthesizing this pair with the original pair now produces a lesser
resultant in the MTF than it would in the absence of distortion and
produces possibly even a reduction over that produced by the single pair.
On the average, assuming random phases, the growth of the MTF, before
normalization, for N contributing pairs of elements would be as in random
walk (i.e., proportional to VN). But, since the normalization at zero

frequency reduces the entire transfer function by 1/N, the net result is

Pt s W e e i ok A e bl ot ks R B ar LR

a 1/V/N reduction in the MTF at that spatial frequency. For nonrandom
phase disturbances, the MTF may become very small, or, in some cases,
negative. Clearly, nonredundant or mipimally redundant arrays would not
suffer significantly from these problems. Radic astronomers have been
interested in this possibility. It remains to be decided by experiment

whether, in the presence of space variant phase distortion, it is more

e < i e oo

desirable, with respect to given image quality criteria for given
classes of images, to have the arbitrary sampling of space varying phase

in the thin array rather than to have tue average but distorted phase in

SR SRR
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the full array. One such comparison experiment 1s described in !
Section 2.E.2. . i 4

D. SIMULATION PROCEDURE

Computer simulation studies of random array imaging were carried

out for the incoherent, coherent, polychromatic incoherent, and parcialy
coherent cases. A modular software package was designed for use on the
simulation studies. This approach was taken to provide a flexible single
executive control program that would simulate these cases while allowing
optiohal system parameters to be introcduced as needed. These optional

system parameters include Gaussian or Poisson noise, atmospheric turbulence,

aperture cohfiguration, and percent thinning factor in the thinned random

arrays. Additicnally, the output format of the reconstructed image and

i Aavaeant imAd

pertinent intermediate data files can be chosen to be in floating point
or packed integer arrays, the latter with or without a header. A block
diagram of the simulation software package is shown in Figure 3.

The simulations are based on the Fourier representations of the

incoherent and coherent imaging process, shown by Eqs. 4 and 8. The
basic components of the simulation are a Fourier transform of the

digitized object array (i.e., the input image), OTF corresponding to

i e Pt B e it Sy el aaa b R il

either the incobherent or coherent case, aad an inverse transform of the

et b Al e 5 Y

product of the above two components to reconstruct the object (i.e.,
the reconstructed image). Additional components of the simulation are
incorporated, as needed, to determine the influence of system parameters

on image quality. The sequence of operations that takes place in the
simulations is described below.

S e L a2
PN I PRI A SR T DG

For the coherent imaging case, a random phase of range 0 to 27 1is . 2
first muitiplied on a pixel-to-pixel basis to the digitized input image. !
This simulates the effect of speckle, which appears in coherently

illuminated objects. The transformation of the input image to the far-

[ s TP

field, or aperture, plane 1s accomplished by taking a fast Fouriler trans-

formation of the input image. At this point, an aperture configuration

Al b rame s,

is generated that consists of a binary pattern of regular or random array
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elements. Examples of regular and randou array patterns are shown in

Figure 4. The patterns are represented lu binary form, with bright pixels

corresponding to a value of 1 and dark pixels to a vaiue of 0. A value
of 1 in the aperture configuration represents a point where an antenna

é element in the array exists, and a value of 0 represents the absence of

i an antenna element. The aperture plane spatial frequeuncies ar= sampled

i only at those locations where an antenna element exists (i.e., where the |

| antenna configuration is represented by a 1 in the binary array). The .

3 product of the Fourier transform of the input image with the aperture

: configuration, taken on a pixel-by-pixel basis, then produces the Fourier

representation of the reconstructed image. Finally, an inverse Fourier

: cransform of this product array produces the reconstructed image, as
imaged with the corresponding antenna array configuration.

For the incoherent imaging case, there exist two major differences

{ in the simulation proccdure. UFirst, there is no complex random phase

' associated with the input image berause an incoherently illuminated ]
|

object produces only an intensity distribution across the object. All
i phase information is suppressed. The fast Fourler transform is taken

with respeét to the intensity distribution of the input image only.

! ol e f s

: Second, the OTF for the incoherert iase is no longer a bimary array

representative of the antenna configuration above. For incoherent
imaging, the OTF is derived by taking a Fourier transform of the aper-

ture configuration, then a complex absolute value squared of this

PR

Fourier transform, and finally a second Fourier transform of this func-

o

tion. In coordinate space, this is equivalent to taking an auto-

correlation of the aperture configuration. Thus, the spatial frequencies

in the aperture plane are sampled by pairs of antenna array elements,

with the sampled spacial frequencies represented by vector distances

between all possible pairs of elements in the array. Thus, depending on

the aperture configuration, redundant sampling is likely to occur. With

b - e A AT LR s, e M e

the exception of the above two differences, the simulation scheme for

coherent and incoherent imaging is identical.
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The incoherent MIF of a full 642 square aperture is shown in Figure 5.
Note the high peak (large redundancy) plotted in the center of the pattern

i
at zero spatial frequency and the general fall-off until the aperture- !
limited frequency is reached.

The PSF of this full square array is shown 1
in Figure 6 and exhibits the familiar sinc2 behavior. For comparison,

i the MTF of a random array of 12.5% of the 642 elements is shown in

Figure 7(a and b). Unly the central 642 is plotted there. Note that,

except for the central peak at zero frequency, the spatial frequency
plane is almost fully uniformly sampled with the low redundancy.
Although not shown here, the sampling continues to the boundary. The
MTF of a 100-element random array (2.44%) is shown in Figure 8 plotted

Al i et s ek sl i L L

in slightly more than one quadrant (802). Sampling to the boundary is
} evident here. The PSF of the 12.5% random array is shown in Figure 9.
It has a central peak width almost identical to the central peak width of

the full array and many additional side peaks of small magnitude.

Figure 10 shows the MIF of a small 25-element algorithmically designed
array. The MIF is compact and nonredundant up to a small frac-
tion of the frequency domain defined by the full aperture.

e e T

A more com-
plete sampling is impossible in principle. For minimal redundancy with

I 8 TR e

i o 2l A ek

almost complete sampling, the random array provides an effective design
‘rion. An illusion makes the region near the center appear to be

"', .)S'.

We have simulated polychromatic incoherent imaging by the process of
averaging or overlaying several monochromatic images, each representing
a difr vent wavelength. In the simulation, different spectral compo- }
nents rere modeled by different overall aperture dimensions. This is
legitimate because, in the far field of diffraction, wavelength and

[ aperture size scale directly. For example, if a full aperture of 64 x 64

elements represents 4096 resolution elements at a certain wavelength, then :

PEVISHR

a smaller size 32 x 32 aperture correctly represents the smaller 1024

1 resolution elements that would obtain from the original 64 x 64 aperture

if the original wavelength were made twice as long. The same physical

aperture at two different wavelengths can be moceled by two different

computer apertures of linear dimensions inverse to the wavelengths.
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This is because the physical diffraction angles are determined by the

ratio of physical aperture to wavelength. If everything else is physically

constant, red light, for example, would have less resolving power than blue.
The sizee of the individual elements in the various apertures we used

were kept constant at a single element and positioned at the same relative

location while the size of the total aperture was varied. This correctly

f models the coustancy of field of view with changing wavelengths. Each
image was renmormalized to 8 bifis to achieve constant antenna efficiency as
a function wavelength. Uniform spectral illumination was assumed in this

study.

RTINS T T s S T R R T Tk M T AT R

For the case of partially coherent imaging, the simulation makes .ase

of the specially constructed separable coherence functions described ia

g

Section 2.A.3. An arbitrary coherence function may be approximated in

this fashion. But if it is not so represented, in separable form, the

o e

general four-dimensional convolutions or Fourier transforms that would

Py

then be needed would far exceed the computer storage available for 1282
: size images. The computer simulation previously used for coherent and ;
] incoherent imaging was modified to accept our separable partially coherent E

model. A block diagram of this simulation is shown in Figure 11. The :

procedure is to input an image of 128 x 128 pixels, represented by their

Elisiar i)

intensity values. The square root of each intensity valu. is taken and,
when speckle modeling is desired, converted to a complex number with a
random phase factor. This gives us a model for the complex disturhance
image. This image was then multiplied by each terw in the separable
representation of the degree of coherence function p (Eq. 22), and the

E Fourier transform was taken of each resultant term. Appendix C gives

an example of the terms of such a separable representation for u. Each
term is then multiplied by the optical transtfer function for the aperture

followed by the inverse transform. The resulting image terms were then

squared and added to obtain the output intensity image. Since only the

image intensities are of interest, no cross terms are computed, and thus
neither tne degree of coherence nor mutual coherence of the output image
was computed. By this means, the impossible burden of extreme storage

needed for four-dimensional computation was transformed to a tractable

but lengthy and expensive one.
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The aperture configuration used in the simulations is generated
straightforwardly. A regular array is generated by setting the antenna
element coordinates of a pradetermined regular pattern to 1 and the
remaining array positions to 0. GCenerally, a square aperture array cor -
figuration was used. For the random array, a random number generator is
used to produce the sequence of numbers used as couordinates of the random
array clements. Each pair of random numbers forms the (x,y) coordinates
of an array element. The random number generator is normalized so that
the range of numbers generated falls within the limits of the aperture
size chosen.

Additional optional system parameters are available to include in
the simulation studies to detexmine the effect of these parameters on
image quality. These include a Poisson noise generator, a Gaussian
noise generator, and an atmospheric turbulence generator. The noise
generators were used tc determine the effect of S/N on image quality for
both regular and random array imaging. The turbulence generator was used
to determine the immunity, if ahy, of random arrays to atmospheric
turbulence. Finally, there are several options avallable to oucput the
reconstructed image on disk for display. Either floaring point f-rmat
or integer format is available, with the latter form normalized to
8-bits over the dynamic raage of the reconstructed image to display it
on gray-scale displays. Options to output the aperture configur‘iyiom

and OTF on disk are alsos availlable.

E, RESULTS OF THE SIMULATION STUDIES %

Bothk inccherent, coherent, and partlally coherent cases were

simulated for monochomatic illumination. Polychromatic incoherent imaging

was simulated as weil. In thece studies, the input image (object) used
was a transparency digitized to 8 bits (24 dB) of dynamic range and con-
taining a high background intensity level. This image was digitized to a
128 x 128 pixel array, the limitation on the size of the array being
imposed primarily by the core space available i: t'.2 comjruter. The size
of the largest full aperture was chcsen to be 64 x 64 elements centered

in the aperture array. With this full array size, tlie resolution eiement
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in the input image is 2 x 2 pixels in size. A total of 642 = 64 X 64 =
128 x 128/2 x 2 4096 resolution elements are therefore produced in the
full array's FOV. From 128 to 2048 elements were usad in the random array ;
simulation studies, corresponding to 3% and 50%, respectively, of the
number of full array elements. All random arrays geuerated in the studies

were confined within the 64 x €4 aperture boundary of the full arvay. |

Rt o T L e § ARt R

Figures 12 through 16 show the results of incoherent imaging with
‘j thinned raniom arrays. Included in each figure are the object and the
full aperture diffraction-limited 1image. These are shown for comparison

with the random array images. Figures 17 through 18 show the results of ’.

A i e

coherent imaging with thinned random arrays; the corresponding full array

image is i1hcluded for comparison. Because of the onget of speckle effects }4

in coherent imaging, an additional parameter, the number of overlays,

e

is introduced. The effects of speckle can be r~duced by speckle averaging, 1

in which reconstructed coherent images with different speckle patterns

are added to "swmooth out" the individual speckle patterns. The coherent

images are shown as a function of the number of overlays used for speckle

averaging.

et

Figure 19 compares full and random arrays for incoherent imaging in
the presence of turbulence. Figures 20 through 25 show the results of

b polychromaticincoherent imaging with thinned random arrays and with the

[ CE R SR

Ak

corresponding full array images for comparison. Partially coherent

imaging was successfully simulated by modeling the coherence in terms of

ot il
PR P SE TR

totally separable functions to avoid four-dimensional transforms, which
would have exceeded the storage capabilities of our computer. Never-
theless, the large computational burden precluded more than a cursory

exar'nation of the problem. A single partially coherent image required

et A s o b AT, st b k!

1 hr of CPU on a PDP KL-10 with a Tenex operating system. Partially

coherent, fully coherent, and incoherent images are shown in Figure 26. :

hdeidh e

1. Incoherent Imaging _ é

: The image quality achievable with random arrays thinned to
3 , only 12.5% of the number of full aperture elements is shown in Figure 12,

NP S

Four different configurations of random arrays were arbitrarily chosen,
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Figure 19. Incoherent imaging in presence of atmospheric turbulence.
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Figure 20. Incoherent monochromatic imaging.
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MONOCHROMATIC DIFFRACTION LIMITED RANDOM ARRAY NO. 1
FULL APERTURE IMAGE 25% OF FULL APERTURE IMAGE
b
i
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|
N
- :
FULL APERTURE IMAGE RANDOM ARRAY NO, 2 ‘
25% OF FULL APERTURE IMAGE ﬁ
Figure 23. Incohereat polychromatic imaging, bandwidth ;
span factor 2.00. '
1
59

‘,; -

k2

i
S sl A i e ki i - b 5 et e a e bmnn d St W PR L e ke .’I;.;-.L...i‘.rm_am_‘..,.—z.<r4-.,:~;<._z~.'.-ﬂcuiﬂ




i g g

FE P ——

g e

o oy e ————

[ S

sy

ad e

AT R T R T ORI v e loal

8842-14

a) MONOCHROMATIC DIFFRACTION b) POLYCHROMATIC IMAGE FULL
LIMITED IMAGE FULL 642 ARRAY ARRAY BANDWIDTH FACTOR TWO

c) MCNOCHROMATIC IMAGE RANDOM d) POLYCHROMATIC IMAGE RANDOM
ARRAY 12,5 % OF FULL APERTURE ARRAY 12.5 % OF FULL ARRAY
BAMDWIDTH FACTOR TWO

Polychromatic incoherent imaging, 100% and 12.5% of full

Figure 24.
array, bandwidth span factor 2.00.
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-‘; a) M™NOCHROMATIC IMAGE RANDOM b) POLYCHROMATIC IMAGE RANDOM

' ARRAY 6.25 % OF FULL APERTURE ARRAY 6.25% OF FULL APERTURE,

BANDWIDTH FACTOR TWO

:

P

g

3 c) MONOCHROMATIC IMAGE RANDOM d) POLYCHROMATIC IMAGE RANDOM

1 ARRAY 3.125 % OF FULL APERTURE ARRAY 3.125 % OF FULL APERTURE

; BANDWIDTH FACTOR TWO

; Figure 25. Polychromatic incoherent imaging, 6.25% and 3.125%
of full array, bandwidth span factor 2.00.
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a) COHERENT 642 FULL ARRAY
Figure 26. Par*ially coherent imaging.
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(Continued)

Figure 62.
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Figure 62. (Continued)
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each containing 512 elements. The full array is composed of 4096 elements.
The four aperture configurations were gemerated by using the first four
sequences of random numbers produced by the random number generating rou-
tine. High signal-to-noise ratios were used in this simulation to isolate
the thinning factor effects from the noise effects in degrading image
quality. The image quality achievable with random arrays thinned to 12.5%
of the full array compares fevorably with the quality achievable with the
full diffraction-limited array. g

One advantage of random arrays is that the image quality does not
suffer catastrophic degradation when a large fraction of tbe array ele-
ments fails (see Section 1). The graceful degradation of random array
images when large fractions of array elements are removed is shown in
Figure 13. Here, the random array elements were removed randomly, with
50% of the elements removed each time. Starting at 1024 elements in a
random array thinned to 25% of the full array number, Figure 13(b,c,e,f)
represents random arrays thinned to 25%, 12.5%, 6.25%, and 3.125% of the
full array. In each case, when random arrays with fewer elements are
created, these arrays are subsets of the previous larger arrays. An
examination of the random array images in Figure 13 shows that there is
no drastic change in image quality until thinning has been reduced to
below the 5% level (Figure 13(f)). High S/N conditions also prevailed
in this sequence of simulations.

Another advantége of thinned random arrays (one mentioned previously)
is that system resolution can be increased dramatically with the same
number of array elements in use. All that is necessary is to spread the
fixed number of elements over a larger aperture area. This 1s vividly
depicted in Figure 14. A 400-element full array was used as a reference
for comparison. The resolution achievable with a full 400-element array,
with aperture size of 20 x 20 pixels, is shown in Figure 14(a). Merely
redistributing the 400 elements onto larger size aperture limits, as was
done in Figure 14(b,c), significantly improved resolution withcut notice-
ably degrading image quality. Here, a threefold increase in resolution
was achieved (see Figure 14(a and c)). For a comparison of image quality,

full array diffraction-limited images corresponding to the increased
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aperture sizes are shown in Figure l4(e,f). These two fulllarrays were
comprised of 1936 and 4096 elements, respectively.

Figures 15 and 16 show the effect of low S/N ratio conditions on image
quality. A Gaussian noise spectrum was added to each array element to
simulate the effect of receiver noise. The variance of the Gaussian
spectrum was adjusted relative to the average intensity of the Fourier
components to produce the S/N ratios shown. Figures 12(c, d) and
13(c, d) represent the image quality obtained from random arrays with
512 elements (12.5% of the full array) for the S/N ratios shown. The
corresponding full array 1irvi:.: i+:r identical S/N ratios are shown below
each random array image. For /¥ ratios above 3, the random array image

quality differs little {::m the iull array images.

2. Coherent Imaging

Results of the computer simulation studies of coherent imaging with
random and regular arrays are shown in Figures 17 and 18. In this
sequence of simulations, the number of overlays is varied to determine
the effect of speckle averaging on image quality. In each figure, the
random array images are shown om the right side, with the corresponding
full array images shown on the left. An aperture size of 64 x 64 pixels
is unsed, and the random array was thinned to 50% of the number of full
array elements. A high S/N ratio prevailed in these simulations.

For the coherent imaging case, the OTF is the aperture configuration
itself. Therefore, when an element of the array is removed, as in a
thinned array, the spatial frequency corresponding to that array element
is not sampled at all.

Speckle effects severly degrade image quality. For the random
array used, speckle effects still are prominent even after 100 overlays,
while for the full array, speckles can be significantly removed at 100
overlay-. For lower numbers of overlays (e.g., less than 10 in this

case), the speckles are quite severe in both situations.
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3. Turbulence Effects i 3

The effect of atmospheric turbulence on image quality obtainable
from random and regular array incoherent imaging is shown in Figure 19

for which a random array thinned to 12.5% of the full array elements was

T

B i

used. Turbulence levels ranging from moderate to severe were used. The

! random array images are again shown on the left column and the full array
'i images on the right. The image quality obtained with the 12.5% random 5;

3 arrays is degraded more severely than the corresponding full array images.

T O Y T

3 E For moderate turbulence levels (0=~ 0.5), the difference in image quality
is slight between the random and full arrays for higher levels of turbu-
lence, but since images are severely degraded anyway, comparisons between
‘ them are less meaningful. There seems to be no evidence from this experi-
f * ment to support the idea that the phase aberration immunity for thinned

: random arrays, discussed in Section 2.C, is of any value for images of
this class. k

4. Polychromatic Incoherent Imaging

The results of our computer simulation studies of polychromatic
incoherent imaging with random arrays are summarized below. Tyyical 1
results are shown in Figures 20 through 25. In these studies, the object
used was a digitized photograph with 8 bits (24 dB) of dynamic range; it
contained a high background intensity level. The image was digitized to

! a 128 x 128 pixel array. The size of the full aperture for the short

T A T W T PR

wavelength limit of the polychromatic bandwidth was chlosen to be 64 x 64
! ! elements, thereby producing 4096 resolution elements in the system FOV at

WINPT

this wavelength. In every polychromatic composite average, the percentage g
P ‘of the number of elements of each monochromatic component is kept fixed
rather than the number of elements. The number of elements used in the
random array simulation studies ranged from 1024 to 32 elements, cor- ;
ki responding to, in separate studies, from 25% to 3.1252 of the number of
- full array elements for apertures varying from 642 to 322 in dimension.
This range corresponded to a factor of two in wavelength. Each figure
(20 through 24) includes the monochromatic diffraction-limited 642 full

aperture image. This is shown as a reference for comparison.

A
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Figure 20 shows two images found with two different random arrays
each thinned to 25% of the 642 aperture, giving 1024 elements. These are,
of course, monochromatic images and show no appreciable degradation due to
thinning. ’

g}gure 21 compa;es the polychromatic images found by averaging full ‘
arrays of 642 and 56° elements with those from two different 25% thinned ’ :
arrays of the same dimensions. The effect of combining the two simulated : E ;
waveleny-hs is very small, and the effects of thinning are entirely neg-
ligible. 1In Figure 22 similar results are seen for arrays of dimension f

642, 562, and 482 each thinned to 25% of 642, 562, and 482, respectivaly.

In Figure 23 for arrays of dimension 642, 562, 482, 402, and 322.
which represent a span of a factor of two in wavelength or bandwidth,
the effects of averaging the more blurry long wavelength image with the
sharper short wavelength image are more noticeable. But the effects of
thinning the full array are still negligible.

Figure 24 again shows a monochromatic diffraction-limited 642 full
aperture image as a new reference for comparing this and the next figure,
Figure 25. 1In Figure 24(a), a more continuous polychromatic image is

shown; it was generated from 10 different monochromatic full array over-

lays spanning a bandwidth factor of two in the array sizes of from 642 to
322. A slight loss of resolution may be noted in comparison to the short
wavelength monochromatic image in Figure 24(a). In Figure 24(c), the

AR i i s LT ALK, 238

] monochromatic image was produced with a random 12.5% of the short-

wavelength (642) aperture. Some small degradation in comparison with
the full-array image can be noted. The polychromatic image, Figure 24(d),
although showing less resolution than Figure 24(c), does not show, for
example, the ghosting evident in the background.

A similar comparison is made in Figure 25(a and b) for thinning to
6.25%. The degraded short wavelength (642) monochromatic image of Fig-

et e Ak el A" a1

ure 25(a) is compared to the polychromatic version of bandwidth factor !
two in Figure 25(b). The severly degraded 3.125% short wavelength (642) f %
monchromatic image of Figure 25(c) is ﬁery much improved in the polychromatic j
factor two bandwidth veraion in Figure 25(d). ’ 3

68

T e —~_.-..~.-‘. Ebaarae

Ll e LSS, o b TPE-EENEUL YA POCTISUILIN T3 ST




e e e s

5. Partially Coherent Imaging

The effects of partial coherence on image formation were studied
by employing separable monochromatic partial coherence functicns of the
kind illustrated in Figure 2. In one set of experiments, speckle
formation was studied as a function of the degree of coherence. As was
expected, the variance of the speckle distribution function decreased as
the coherence was reduced. The dramatic difference between coherent and
incoherent imaging may be seen by comparing Figure 25(a) with Figure 26(b),
respectively. The coherent picture, without any added random phase,
displays the vivid edge "ringing" expected from the diffraction of sharp
boundaries. This can be noted in the border of the picture in the face
of the subject, and along the right side of the subject's hair. The
incoherent image, Figure 26(b), shows no obvious comparable effects. The
partially coherent image, Figure 26(c), using the 121-term separable
coherent function plotted in Figure 2, shows an intermediate degree of
diffraction effects. These effects properly are somewhat exaggerated
when discrete as opposed to continuous arrays are employed (as noted in

Appendix B).
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SECTION 3

SUMMARY OF RESULTS

The results from the computer simulation studies of random array

imaging suggest that random arrays are primarily useful for incoherent

Y e

imaging applications. The advantages of random array imaging for inco-
herent imaging are

5 Large degree of thinning possible. In this study, we have shown
‘ that random arrays thinned to less than 6% of the number of ’
full array elements (4096) produce incoherent image quality :
comparable to the full array diffraction-limited image quality. f
The degree of thinning allowable is, in principle, inversely |
; proportional to the square root of the number of elements in
: the full array, which number is equivalant to the number of
: elements resolved by the full array in its fleld of view.

[

Polychromatic radfation, Thinning to 3% was shown to be

; similarly effective in the case of broadband: with polychromatic
‘ imaging.

Easy to design. Many random array configurations produce image
[ qualities comparable to full array diffraction-limited quality.

The probability of success can be estimated for choosing an
array.

2 Graceful degradation. The image quality obtainable from
random arrays does not suffer catastrophic degradation when
large fractions of array elements are removed. The image
quality degrades very gracefully,

Sl Bt e el e L o bt

1T T T T

Increased resolution with fixed number of array elements.
The resolving capability of random arrays can be increased
| significantly using the same number of array elements. This
is accomplished by merely redistributing the array elements
over a larger aperture size.

e

Partially coherent imaging proved extraordinarily expensive to
simulate, but a separable version of the coherence function was modeled
that allowed a cursory examination of the problem. As expected, the

behavior of partially coherent images was qualitatively between the
coherent and incoherent extremes.
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For incoherent imaging in turbulent conditions in the atmosphere,
thinpned random arrays suffer only slightly in image quality when compared
to full array images for a large range of turbulence levels. For lower
turbulence levels, the difference in image quality is slight, although
the random array images were more degraded. For higher turbulence
levels, both arrays suffered severe degradations, and the comparison o€

image quality under those circumstances is less meaningful.
For coherent imaging applications, random arrays do not offer sig-

nificant advantages over full arrays. This is because speckle effects can-
not be reduced enough by speckle averaging (or overlays), and substantial

degradation of imag: quality still remains after numerous overlays.
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P © APPENDIX A

RANDOM ARRAY DES1GN THEORY

There is a body of microwave antenna lite  ~ re dating from the
19608 deacribing the theoretical expectations large antenna arvays

oo with randomly spaced elements. The tradeoffa between resolution, gain,

" and sidelobe level have been analyzed in probabilistic terms. These

? , ideas have been experimentally tested, and the results were favorable.
P ' Comparisons were also made between relative efficacy of antennas
|

designed algorithmically and those designed by random placement of the
elements; the latter showed remarkable advantages. This appendix

1
briefly summarizes some important points from the work of Lo.1

The sidelobe level is related to the number of elements and only |
slightly to the aperture dimension, High resolution can be obtained
; , with few elements, and, for a given number of elements, high resolution i

can be obtained by spreading these elements without a substantial change
in the sidelobe level or the directive gain.
; The probability of a sidelobe level below r is [1 - exp(-er)] aa’ !

where N is the total number of elements, a 1s the aperture dimension !

A

measured in wavelengths, and r is the sidelobe level with the mainbeam

3 normalized. Figure A-1 is a universal plot of:this relationship plot-
13

Py eV R

ting probability versus r/N for a variety of aperture dimensions indexed

by q = log10 a. For planar arrays, q is equal to the sum of 4 and qy-
This family tells the probability of finding ("designing") a random
array with a specified maximum sidelobe level for a given aperture and
number of elements., Figure A-2 demonstrates the neérly perfect agree-
; ment between the probabilistic theory and a computer simulation with

randomly positioned antenna arrays.

; ‘ 1Y.T. Lo and R.J. Simcoe, IEEE Trans. Ant. and Prop., Vol. Ap~15, No. 2,

P March 1967, pp. 231-235.
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i daleechadion, ol

J),

Theoretical distribution curves for r/ﬁ, where N = total ; |
number of elemeants, snd r = sidelobe level., In the case
of a linear array, q = log)q (array length in wavelengths);

in the case of a planar array, q = log;j (aperture area
in wavelengths squared).
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Figure A-2, ?
Comparison of the theoret cal and experimental
: distributions for the sidelobe levels of linear 1
o arrays. The experimental distribution 1s :
3 obtained from 180 psecudo-random linear arrays

generated by two plaunar arrays,
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APPENDIX B

DIFFRACTION EFFECTS IN DISCRETE COHERENT IMAGES

The gencrdl effects of diffraction in coherent images are well

known but there are novel striking effects when the arrays are discrete

rather than cofltinuous. Especially strong symmetric effects can be

" seen when the 1maging array is full and the number of elements in the

array and in tHe object is commensurate. In Figure B-1, the coherent

images of a 642 bright uniform object produced by four different full
arrays are showh. In Figure B-1l(a), a 642 full aperture was used, and 162

bright crossed lines appear in the image. In Figures B-1(b), B-1(c),
i and B-1(d), 7°

N p T T T T I A TR T L T T A R

s 82; and 92 full apertures were employed, respectively.

The four bright corners in the images are much more distinct in the case

P R T

E of the 82 aperture,which is, of course, commensurate with 642. The

§

E diffraction effects of the 642 aperture can be noted in the coherent and
)
£

partially coherent images in Figure 26.
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Figure B-1. Diffraction effects in rz'oherent imaging with discrete
arrays. Images at a 64 uniform object with full
apertures of sizes: a) 642, b) 72, ¢) 82, d) 92,
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APPENDIX C
SEPARABLE REPRESENTATION OF TEE DEGREE OF COHERENCE FUNCTION

Let (X,Y) be the pixel location of the vector W in Eq. 22.

A, =126 %270 4, =120x27° A =10x2°
Ay =~210x 27  Ag= 43x27° A =27 in Eq. 2L
a=2"9 .
The M = 121 terms for each f in Eq. 22 are:
(L a4, T (18)  sin(2Y) . /ﬁ;ﬁ;
(2) cos(®x) ~  VZAAS (19)  sin(3Y) - V2K A,
(3)  cos(2X) © VIR A, (20)  sin(4Y) - V2A K,
(4)  cos(3X) -+ VZA A, (21)  sin(5Y) - VZA K,
(5)  cos(4X) © VAR, (22)  cos(X-Y) . /A_i—
(6)  cos(5X) © /2R A, (23)  cos(x-2v) - J/AJA,
(73 sin(X) . /ﬂ';'q (24)  cos(X-3Y) . JK'I'TA;
(8)  sin(2X) . /i‘A‘;'A_Z (25)  cos(X-4Y) - /R,
(8) sin(3x) - v’Z—A:K; (26) cos(X-5Y) . '/X]-.A_S
(10)  sin(4X) . /ZQK; (27)  cos(2X-Y) - VAA]
(11)  sin(5X) . J‘z‘i’;@ (28)  cos(2x-2Y) /A-Z—
(12)  cos(Y) . /21‘;’5‘; (29) - coa(2X-3Y) fA';K;
(13)  cos(2Y) . /2’A:KZ“ (30) cos(28-4Y) + VAA,
(14)  cos(3Y) * V2K K] (31)  cos(2x-5Y) * VAAS
(15)  cos(4Y) © V2R K, (32)  cos(3%-Y) -« YA
(16)  cos(5Y) . fz"Ao‘A‘; (33)  cos(3%-2Y) * VKA,
(17)  sin(Y) - VIEA] (36)  cos(3-31) - VA
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§
(35) cos(3x-4Y) - VAKX (59)  sin(3%-37) * JKA; |
(36) cos(3x-5Y) * VAR (60)  sin(3X-4Y) + VAR,
E:? (37) cos(4X~Y) . .’KZA'I' . (61)  sin(3X-5Y) /A;KS‘ ) %
E (38) cos(4x-2Y) * VAK; (62)  sin(4X-Y) + /KA ,
, (39) cos(4x-3¥) - VKX, (63) stn(4x-2) * JAE,
(40) cos(4X-4Y) -‘ /A K, (64) sin(4x-3v) - JEKS ;
(41) cos(4X-5Y) - /AR (65)  sin(4X-4Y) /KK, :
f (42) cos(5X-Y) -+ VAL (66) sin(4x-5Y) * VA&, 11
(43) cos(5%-2Y) + VAR, (67)  sin(5X-Y) /A&, ;
; (44) cos(5%-3Y) VEKS (68)  sin(5x-2Yy * V/KXK, }
?  (45) cos(5X-4Y) - /AR, (69)  sin(5%-3Y) .’5{;1; ! 3
(46) cos(5%-5Y) ¢ VAR, (70)  sin(5%-4Y) - VALK, :
L (47) sin(X-Y) . ;/A?i_ 1) sin(5%-5v) - /AK, Z %
; (48) sin(x-2v) - /A&, (72)  cos(X+Y) VAR, ;
(49) sin(x-3Y) - JAA, (73)  cos(x+2¥)  + VAR, ;
(50)  sin(x-4v) - /A&, (74)  cos(:3V) - VAE,
(51) sin(X-5Y) /KA 75)  cos(xHY)  * VAE,
(52) sin(2X-Y) . /Z;KI (76)  cos(X+5Y) 7 ?
(53) sin(2X-2Y) VA, (77)  cos(2x+¥) - VA& ;’ i
(54) sin(2X-37) - /KA, (78)  cos(2Y+2Y) VEK, P
(53) sin(2%-4Y) -+ /KA, (79)  cos(2x43Y) ~ VKA, 3
(56) sin(2X-5Y) ./KZ'K; (80)  cos(2x+4y) @ z *
(57) sin(3%-Y)  + VAR (81)  cos(2K+5Y) e i
(58) s8in(3X-2Y) .’W (82)  cos(3X+Y) . @‘1
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b f (83) cos(3x+2Y) /I;Kz— (103) sin(2x+2y) - /K;A'z'
: (84) cos(3x+3Y) - VAR (104) sin(2K4+3Y) - VK,
? 5 ‘ (85) cos(3X+4y) - »’5';&: (105) sin(2x4+4Y) JK{EZ

- (86) cos(3M5Y) VAR (106) sin(2x¢5Y) + VEA

F (87) cos(4X+Y) . v’AZK'l‘ (107)  sin(3X+Y) . /A°3'KI :

E ‘ (88) cos(4x+2y) ¢ A&, (108) sin(3%+2Y) .cga; |

; ' (89) cos(4X+13Y) . /A:E; (109) sin(3X+3Y) . /K;K;

% | (90) cos(4X+4Y) - AR, (110) sin(3X+4y) /X;T[;

i (91) cos(4Xs-5Y) fA:A'; (111) sin(3X+5Y) /A';A'S_

’ (92) cos(5%+Y) . /K;q (112) sin(4X+Y) . /A‘ZA"{

‘ (93) cos(5x+2y) - »’K;Tz" (113)  sin(éx+2Y) /K;’A‘z'

E (94) cos(5Xx+3Y) - fA—S-Ag (114) sin(4x+3Y) /K;A;

E (95) cos(5%+4Y) fKS‘A'; (115) sin(4X+4Y) - JKZAZ

E (96) cos(Sk+5Y) - VA, (116) sin(4x+5V) - VA, %
E (97)  sin(X+Y) + /AT (117)  sin(5%+Y) - VAES 4
; | (98) sin(X+2Y) ¢ v’K;A; (118) sin(5X+2Y) . v’A—S—K; i
3 (99) 'sin(x#3Y) - VAR, (119) sin(5%+3Y) - /KA
(100) sin(x+4Y) . »’X;X,“ (120) sin(5%+4Y) - JX;A‘;
(101) sin(x+5v)  * /KK, (121) sin(s%5Y) - VAA, ‘
(102) sin(2x+) /KA 1
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